Chronos is one of the many Smalltalk-related blogs syndicated on Planet Smalltalk
χρόνος

Discussion of the Essence# programming language, and related issues and technologies.

Blog Timezone: America/Los_Angeles [Winter: -0800 hhmm | Summer: -0700 hhmm] 
Your local time:  

2010-04-30

New research could help develop gamma ray lasers and produce fusion power

From PhysOrg.com:

Positronium is a short-lived system in which an electron and its anti-particle are bound together. In 2007, physicists at the University of California, Riverside created molecular positronium, a brand-new substance, in the laboratory. Now they have succeeded in isolating for the first time a sample of spin polarized positronium atoms.
Full article


Intracellular protein transportation governed by simple rules

From PhysOrg.com:


This is a fascinating example of how complex processes can be controlled with simple physical and chemical rules. At first glances, it would appear to be enormously challenging to identify the proteins that need to be transported to a certain location, to spot any that have been transported to the wrong place and to stop them radiating off from their ultimate destination. Yet the cell manages this in a really simple way without any additional receptors or regulatory mechanisms. Other self-organising systems, too - such as insect colonies - often work on relatively simple principles. They would otherwise be unable to handle the multitude of tasks they need to perform. "These findings represent a milestone. They will change the way research in cellular biology is done. It’s only when we as scientists understand the principles by which life works that we are truly able to understand life. Focusing on the many different signalling pathways within the cell doesn’t really help that much," says Philippe Bastiaens.
Full article


2010-04-28

Computing, Sudoku-style

From PhysOrg.com:

Radul envisioned a new type of computer system that would handle multidirectional information flow automatically. Indeed, not only would it pass information forward and backward through stages of a multistage process, but it would pass data laterally, too: The results of one stage could be fed into, say, two others, which would attack a problem from different directions simultaneously, reconciling their answers before passing them on to the next stage. At that point, the stages of a process wouldn’t really be stages at all, but computational modules that could be arranged in parallel or in series, like elements in an electrical circuit. Programmers would simply specify how each module was connected to those around it, and the system would automatically pass information around until it found solutions that satisfied the constraints imposed by all the modules.
Full article


2010-04-27

Is "Dark Matter" actually "Mirror Matter" (having inverse parity to "normal" matter)?

From PhysOrg.com:

The inspiration for mirror matter came from an experiment performed in 1956 that showed that the laws of nature are not left-right symmetrical (also called parity-symmetrical, or p-symmetrical). Specifically, the experiment showed that particles in weak interactions display a preference for left-handedness, so that in a way, the Universe is left-handed. Since the other two forms of symmetry - rotational and translational - do seem to be symmetrical everywhere in nature, scientists wonder why nature doesn’t have p-symmetry as well. But if mirror matter exists, it would solve this problem by having slight right-handedness and restoring the Universe’s p-symmetry.
Full article


2010-04-25

Brain-like computing on an organic molecular layer

From PhysOrg.com:

Information processing circuits in digital computers are static. In our brains, information processing circuits—neurons—evolve continuously to solve complex problems. Now, an international research team from Japan and Michigan Technological University has created a similar process of circuit evolution in an organic molecular layer that can solve complex problems. This is the first time a brain-like "evolutionary circuit" has been realized.
Full article


2010-04-23

IBM demonstrates nonoscale 3D patterning technique

From PhysOrg.com:

IBM Research in Zurich has demonstrated a new nanoscale patterning technique that could replace electron beam lithography (EBL). The demonstration carved a 1:5 billion scale three-dimensional model of the Matterhorn, a 4,478 meter high mountain lying on the border between Italy and Switzerland, to show how their technique could be used for a number of applications, such as creating nanoscale lenses on silicon chips for carrying optical circuits at a scale so small that electronic circuits are inefficient.
Full article


2010-04-21

Bizarre matter could find use in quantum computers: Odd electron mix has fault-tolerant quantum registry

From PhysOrg.com:

There are enticing new findings this week in the worldwide search for materials that support fault-tolerant quantum computing. New results from Rice University and Princeton University indicate that a bizarre state of matter that acts like a particle with one-quarter electron charge also has a "quantum registry" that is immune to information loss from external perturbations.
Full article


2010-04-20

A Little Less Force: Making Atomic Force Microscopy Work for Cells

From PhysOrg.com:

Scientists with Berkeley Lab's Molecular Foundry have developed a nanowire-based imaging technique by which atomic force microscopy could be used to study biological cells and other soft materials in their natural, liquid environment without tearing apart or deforming the samples. This could provide scientists with the long coveted non-destructive means of dynamically probing soft matter.
Full article


2010-04-16

Scientists discover new genetic sub-code

From PhysOrg.com:

In a multidisciplinary approach, Professor Yves Barral, from the Biology Department at ETH Zurich and the computer scientists Dr. Gina Cannarozzi and Professor Gaston Gonnet, from the Computer Science Department of ETH Zurich and the SIB Swiss Institute of Bioinformatics, joined forces to chase possible sub-codes in genomic information. The study, which will be published in today's issue of the journal Cell, led to the identification of novel sequence biases and their role in the control of genomic expression.
Full article


2010-04-15

Network expands to 256 times its original size to bridge the micro and macro worlds

From PhysOrg.com:

Now that scientists have developed a diverse assortment of nano- and micro-sized devices and materials, one of the biggest challenges is finding a practical way to incorporate them into macroscale systems. For example, tiny sensors, actuators, and electronic devices can only live up to their full potential when they can be exploited in large systems in everyday life. In a new study, researchers have developed an effective way to bridge the micro and macro scales by designing a network of microwires and micronodes that can be expanded from a few square centimeters to one square meter at low strain levels in the material.
Full article


2010-04-14

Cat brain: A step toward the electronic equivalent

From PhysOrg.com:

"We are building a computer in the same way that nature builds a brain," said Lu, an assistant professor in the U-M Department of Electrical Engineering and Computer Science. "The idea is to use a completely different paradigm compared to conventional computers. The cat brain sets a realistic goal because it is much simpler than a human brain but still extremely difficult to replicate in complexity and efficiency."
Full article


2010-04-13

New nano-tool synthesized

From PhysOrg.com:

Featured on the cover of the April 19, 2010 issue of the International Edition of the journal Angewandte Chemie, this molecule may be useful as a laboratory tool for controlling tiny reactions in the test tube, and it has potential to be developed as the basis of a new technology that could sensitively detect metals, toxins, and other pollutants in the air, water, or soil.
Full article


Berkeley Lab Scientists Create 'Molecular Paper'

From PhysOrg.com:

Berkeley Lab scientists have created "molecular paper," the largest two-dimensional polymer crystal self-assembled in water to date. This entirely new sheet material is made of peptoids, engineered polymers that can flex and fold like proteins while maintaining the robustness of synthetic materials.
Full article


2010-04-12

New hope for ultimate clean energy: fusion power

From PhysOrg.com:

An international team of researchers - led by Emeritus Professor Heinrich Hora, of the University of New South Wales Department of Theoretical Physics -has shown through computational studies that a special fuel ignited by brief but powerful pulses of energy from new high-energy lasers may be the key to a success that has long eluded physicists.
Full article


2010-04-11

Researchers harness viruses to split water: Crucial step toward turning water into hydrogen fuel

From PhysOrg.com:

A team of MIT researchers has found a novel way to mimic the process by which plants use the power of sunlight to split water and make chemical fuel to power their growth. In this case, the team used a modified virus as a kind of biological scaffold that can assemble the nanoscale components needed to split a water molecule into hydrogen and oxygen atoms.
Full article


2010-04-09

Significant findings about protein architecture may aid in drug design, generation of nanomaterials

From PhysOrg.com:

Researchers in Singapore are reporting this week that they have gleaned key insights into the architecture of a protein that controls iron levels in almost all organisms. Their study culminated in one of the first successful attempts to take apart a complex biological nanostructure and isolate the rules that govern its natural formation.
Full article


2010-04-07

H.P. Sees a Revolution in Memory Chip

From The New York Times:

Hewlett-Packard scientists on Thursday are to report advances in the design of a new class of diminutive switches capable of replacing transistors as computer chips shrink closer to the atomic scale.
Full article