Chronos is one of the many Smalltalk-related blogs syndicated on Planet Smalltalk
χρόνος

Discussion of the Essence# programming language, and related issues and technologies.

Blog Timezone: America/Los_Angeles [Winter: -0800 hhmm | Summer: -0700 hhmm] 
Your local time:  
Showing posts with label nominal time. Show all posts
Showing posts with label nominal time. Show all posts

2007-02-02

Why don’t calendars do Time Zones?

Jim Phelps asks (2006-01-18) "Why don’t calendars do Time Zones?"

He laments "My laptop and my palm both understand Time Zones. I understand Time Zones. Why don’t my calendar applications (Oracle’s Calendar and the Palm Calendar in the handheld) understand Time Zones?"

Jim has the following "simple" requests:


  1. When I create an appointment I should be able to mark the Time Zone for the appointment.

  2. I should also be able to make appointments that are Time Zone neutral - not tied to a Time Zone.

  3. My clients (Palm and Desktop and Web) should all understand Time Zones and should be able to shift the alarms to compensate for my changes in Time Zone.

Here's how Jim would use such functionality, were it only available:

  • If I get an invite to join a conference call at 11AM EST, I could just enter that time without adjusting for my local time zone. Same with UTC time.

  • If I changed time zones (say fly from Madison to San Francisco), my alarms would change to be appropriate. As it is now, if I fly to California, I need to keep track of the fact that the 10AM meeting is really a[t] 10AM Central time so I need to set an alarm 2 hours earlier. But I can’t do a global change because some things might be dinners in California so they need to stay on Pacific time.

Of course, Jim's not the only one whose Use Cases aren't well satisfied by most current applications and/or date time libraries. For example, a few years ago, some date/time Use Cases were posted on Zope.org, because Zope's date/time functionality was seen as unsatisfactory. And on BoingBoing, there was the rant "Extended iCal rant from a timezone warrior," whose basic complaint resembles Jim's. There was also recently a discussion on Bugzilla where some of the same issues and concerns were raised.

Here are the key requirements that can be abstracted from the aforementioned discussions/rants:
  • It must be possible to associate each point-in-time value with a time zone that may or may not be the same as the time zone associated with other point-in-time values.
  • It must be possible to specify a point-in-time without reference or association to any particular time zone. (Examples: The point-in-time that specifies the first moment of 2008 (for any and all time zones,) the annual date on which a person's birthday is celebrated, the list of non-business days of the US Federal government, the date on which a person must have been born in order to legally purchase alcohol today.)
  • Point-in-time values must either know, or be able to derive, both their local time and their Universal Time.
  • It must be possible to convert point-in-time values from one time zone to another.
  • The same point-in-time value must be able to act as though it is associated with ("local to") a different time zone in different contexts (e.g., the possibly-different local time zone of different users at the same time, and also the local time zone of the same user at different times, even when the user's local time zone changes as he travels from one location to another.)
  • Point-in-time values should provide both sufficient sub-second resolution and sufficient range (from earliest to latest representable value.)
  • Point-in-time values should provide appropriate granularities--timestamps should span a reasonably small sub-second duration, but dates should span a calendar day (and not be sub-second-resolution timestamps that happen to specify the first moment of the day.)
  • Point-in-time values must be immutable so that changes to their value don't invalidate the logic that uses them (e.g., they must be useable as dictionary keys.)
  • Adding any combination of some number of days, months and years to a point-in-time value should result in a new point-in-time value that number of days/months/years distant--but having the same civil time of day, regardless of any DST transitions that may have occurred.
  • It must be possible specify partial/recurring dates and times (e.g., "every/any day at 5pm," "the last Sunday of October every/any year.")


I was especially interested in what one of the Zope developers had to say in response to the Zope Use Cases posted by the general public (spelling and punctuation as in the original):

"I find all of that very allarming.

Do people want the datetime object solve all this use cases out of the box? I hope that they are only samples of applications and that people agree that they will have to do a little work by theimself.

It is already difficult to find a straightforward interface for basic operations, if we wait to have an universal datetime type, we will never have it before Python 48.12b1 release.

So please, go for a minimal API, and let people play with the type and discover the better way to do elaborated stuff.

By the way from the tz database README file at: http://www.twinsun.com/tz/tz-link.htm you can't guess a time zone from a time-zone offset and a daylight saving flag.

So I think that a full and cross-platform timezone support is just a wonderful dream. But if you can prove me that I'm false, with an actual implementation ..."


I'm quite sure that many programmers would have a similar reaction: They'd be highly alarmed. Well, tough. People don't care how you solve their problems, they just want them solved. A solution that doesn't work right can be worse (or no better than) not having any solution at all.

We've had "a minimal API" for date/time computations available in just about every programming language and operating system for decades now--but the requests, complaints and rants shown above are from recent times, not from decades past. It's almost universally true that programming languages, operating systems and applications either don't handle dates/times at all, or don't do so correctly and consistently, and don't satisfy most of the requirements discussed above.

"Do the simplest thing that could possibly work" is not a license to provide incomplete and/or incorrect functionality. Real use cases that are commonly encountered are not being satisfied. The first step to a cure is to admit there's a problem.

Dates and times are not simple. Not at all. They're a relatively hard problem. The truth is, dates and times are too hard for most programmers to handle correctly on their own--which is precisely why they don't do it, and instead attempt to justify their failure by misapplying design principles. And that's why the "provide the simple stuff, and let the application coders solve the hard problems" approach won't work. It doesn't work in other domains, either--not in the past, not now, and probably not ever.

The "let them do it themselves" approach is about as wise as letting each application programmer code his own number classes, his own collection classes, his own filesystem, his own garbage collection engine, his own virtual memory subsystem, his own graphics library and GUI framework, his own web/application server--and in his spare time, develop his own programming language and compiler. If you really feel that a date/time library that actually gets the job done would be just too complex, then to be consistent, you would have to raise the same objection to all the other tools that programmers don't do themselves anymore (because the problems are hard, and most programmers will take unwise shortcuts, or make serious errors, if they have to do it themselves.)

As time has gone by, we've gone from machine language, to assembly language, to procedural languages, to functional languages, to object-oriented languages. We've gone from no operating system, to reusable, statically-linked code libraries, to dynamically-linked code libraries, to run time systems, to basic operating systems, to operating systems with virtual memory, to operating systems with GUIs. We've gone from punched cards to Microsoft Word, and from the abacus to Microsoft Excel.

Does anyone see a pattern here? Yes, you have to walk before you can run. But we've been crawling around trying to avoid actually dealing with dates and times in all their glory for far too long now. It's time to advance to the next level. So, to the programmers of the world, I say: Admit it. Admit that you're not satisfying the real date/time use cases.

As for an actual implementation of a date/time library that satisfies the requirements we've been discussing, it happens that there is at least one: The Chronos Date/Time Library. Of course, it's a date/time library, not a calendaring/scheduling application, so it would be more accurate to say it makes it much easier to write applications with just about all of the requested features. Yes, applications do need to take some responsibility for their own particular use cases.

What are the features of Chronos that satisfy (or greatly help to satisfy) the requirements discussed above? They are as follows:

  1. Chronos uses the Olson Time Zone Database, so it knows about all the world's time zones--including historical information. For example, Chronos knows, and is able to correctly handle, all the following facts:
    • Most (but not all!) locations in North America have been switching from standard time to daylight saving time on the first Sunday of April each year, from 1987 through 2006--but starting in 2007, most North American locations will switch from standard time to daylight saving time on the second Sunday of March.
    • All the countries in the European Union modernly transition to and from daylight saving time at the same moment in Universal Time--unlike the case in North America, where all zones with the same offset transition to/from daylight saving time at the same local time, but at a different moment in Universal Time.
    • All of India uses the same time zone offset, does not observe daylight saving time, and uses an offset of 5.5 hours east of Universal Time.
    • In Australia, South America, New Zealand and Africa, daylight saving time, if it is observed at all, is observed during the Southern Hemisphere's summer (for example, from September to April.)
    • During World War II, several countries were on "daylight saving time" all year round for several years in a row (in the US, this was called "War Time," and was abbreviated as "EWT," "CWT," "MWT" and "PWT.")
    • For the years 1921 and 1922 only, Moscow started the year with an offset of 3 hours, transitioned to an offset of 4 hours on 1920-02-24T23:00 and 1921-02-24T23:00, transitioned to an offset of 5 hours on the 79th day of the year (different dates and day-of-the-week each year,) transitioned back to an offset of 4 hours on the 244th day of the year, and then transitioned back to an offset of 3 hours on the 274th day of the year (so there were 4 offset transitions and 3 different offsets each year.)

  2. In addition to the predefined time zones that come from the information provided by the Olson Time Zone Database, Chronos permits you to define your own time zones--which can be as simple as "-5 hours asTimezone" or as complex as any of the cases described in the preceding bullet item. Or you can easily construct a Chronos time zone from either a POSIX time zone rule literal or from the information in the Windows registry--and it will behave identically to its UNIX or Windows counterpart.

  3. The Chronos Time Zone Repository (which is generated from the Olson Time Zone Database) is deployed separately and independently from the Chronos codebase. Either can be changed without any need to redeploy the other--and even already-running applications can see and use a newly-deployed version of the time zone repository. And both Chronos and the Chronos Time Zone Repository are available for Windows, Mac, Unix and Linux--so your applications will not only run unchanged in all those environments, but will exhibit identical date/time behavior.

  4. Chronos point-in-time values can be associated with ("bound to" in Chronos terminology) a particular time zone. Or, they can be bound to a proxy time zone that dynamically refers to a different time zone at different times or in different contexts (so that the associated point-in-time's local time changes dynamically whenever the proxy time zone is changed to have a different time zone as its referent.) Or, Chronos point-in-time values can be bound to a special time zone that Chronos refers to as "nominal time." Nominal time represents the concept of "any time zone," or "local time in some unspecified context, or in any and all contexts simultaneously."

  5. Chronos point-in-time values that are bound to a specific time zone or to a proxy time zone (and so aren't bound to nominal time) are said to be invariant to Universal Time. Chronos point-in-time values that are bound to nominal time are said to be invariant to nominal time. Point-in-time values that are invariant to Universal Time keep the moment in time that they represent in Unversal Time as their semantic invariant. Point-in-time values that are invariant to nominal time keep the moment in time that they represent in nominal time (their "local time") as their semantic invariant. In other words, two points-in-time that are invariant to Universal Time are equal when they represent the same moment in Universal Time, regardless of the moment they nominally specify in their local time zone (the one to which they are bound.) But a point-in-time that is invariant to nominal time is equal to any other point-in-time that specifies the same nominal (local) time. So the following expressions both evaluate to true:
    • (Timepoint 
      year: 2007 month: 2 day: 3
      hour: 10 minute: 0 second: 0
      timeZone: -8 hours)
      = (Timepoint
      year: 2007 month: 2 day: 3
      hour: 13 minute: 0 second: 0
      timeZone: -5 hours)
      "10 am in California is the same moment
      in Universal Time as is 1pm in New York"
    • (Timepoint 
      year: 2007 month: 2 day: 3
      hour: 13 minute: 0 second: 0
      timeZone: Timezone nominal)
      = (Timepoint
      year: 2007 month: 2 day: 3
      hour: 13 minute: 0 second: 0
      timeZone: -5 hours)
      "1 pm nominal time is 1pm local time,
      regardless of time zone"

  6. Chronos point-in-time values that are invariant to Universal-Time internally store their value in Universal Time, but report their year, month, day, hour, minute and second according to the equivalent local time in the time zone with which they are associated. Also, the local time values for their year, month and day-of-month are cached (lazily computed when needed--it's an expensive computation.)

  7. Chronos point-in-time values can easily (and efficiently) be converted from any time zone to any other:
    (Timepoint 
    year: 2007 month: 2 day: 3
    hour: 13 minute: 0 second: 0
    timeZone: 'Pacific/Honolulu') >> #'Asia/Katmandu'
    results in 2007-02-04T04:45:00+05:45 (and yes, Asia/Katmandu actually does have an offset of 5 hours 45 minutes.)

  8. Chronos point-in-time values have no limits (other than available memory on your computer) with respect to the range of representable dates--a feature that derives mostly from the fact that Chronos is implemened in Smalltalk--although, even if the implementation language had limited the design to using nothing but 32-bit signed integers, the way Chronos internally represents point-in-time values would still have supported a range of +/- 6 million years for timestamps (and +/- 2 billion years for dates.) Chronos also provides a special value that represents the infinite past, and another that represents the infinite future.

  9. Chronos point-in-time values are actually time intervals, as explained in the Chronos blog entry Chronos 101: "Points" in Time. Chronos points-in-time that are meant to represent dates have a temporal extent (and hence resolution) of one calendar day. Chronos points-in-time that are meant to be used as timestamps have a temporal extent (and hence resolution) of one nanosecond. In addition to these two common cases (one optimized for dates, the other for timestamps,) Chronos provides general Timeperiod values, which can start at any point in time, and can have any temporal extent/duration.

  10. Chronos point-in-time, durational and time interval values are all immutable.

  11. Chronos handles date/time arithmetic correctly, satisfying both civil and scientific/technical use cases. Adding a day results in the same civil time of day on the next calendar day.

  12. Chronos provides a variety of classes for representing partial/recurring dates--including the time-of-day without any associated date, and the month/day without any specified year. You can even construct a value that specifies "the first Tuesday of November, every fourth year modulo 4."

And there's yet more. If you're interested, you can peruse the Chronos web site, browse the Chronos blog, or read the "Chronos 101" tutorials, of which the following have been published so far:

So, to answer Jim's original question, calendar applications don't understand time zones because most people, including software developers, programming language library creators and programming language designers don't understand time zones. Or in some cases, they understand them well enough, but decide (for whatever reason) that full and correct time zone behavior is more work than they want to take on. Fortunately, that unwillingness to tackle the date/time domain comprehensively is not universal.


2006-04-22

Time Semantics: Getting it wrong is easy

Outlook, Appointments and Time Zones:

"To many people, Outlook really seems really bad at handling time zone changes, and that's being kind. This is in part because people don't understand that Outlook uses UTC time for appointments and adjusts the time using the time zone offset configured on the computer."

Translation: You're stupid. Learn to think like your computer!

"Note that this is not "an Outlook problem", as this is how computers, email clients and mail servers handle time zones."

Translation: Other programs work just like Outlook, and the programmers can't all be wrong. [Or can they?]

"Outlook does not support an absolute time option for the calendar, which would permit you to enter 2 PM and the appointment would always stay on 2 PM, no matter how many times you changed the time zone. It also doesn't have an option for ‘in what time zone?’ so that you could make an appointment for 2 PM and select Pacific time zone and it would show up as 5 PM in your calendar when the computer is using the Eastern time zone."

Translation: Ok, we fess up: The problem really does lie in the fact that Outlook uses the wrong time semantics.

The Moral of the Story: Even Billion-Dollar Corporations can get time semantics wrong.

Sometimes, you want timestamps that are invariant to nominal time, so that 3pm = 3pm, with the time not bound to any time zone at all. Other times, you want timestamps that are invariant to Universal Time--so that 2pm in San Francicso will be equal to 5pm in New York.

Sometimes, you want timestamps statically bound to a specified time zone, so that 2pm in San Franciso always is displayed as 2pm (even though the computer treats it as equal to 5pm in New York.) Other times, you want timestamps whose "local time" changes dynamically to match whatever time zone the user specifies as the "local time" of the computer--so that the time displays as 2pm when you've set the computer's time zone to San Francisco time, but displays as 5pm when you've set the computer's time zone to New York time.

Unfortunately, not only do most applications get this wrong, most date/time libraries don't support both nominal-time invariance and Unviersal Time invariance, nor do they support both timestamps statically-bound to a specified time zone and also timestamps bound dynamically to the current system time zone.

Chronos does it all.


2006-02-01

Martin Fowler talks about TimePoints

Martin Fowler:

The most common issue with time points is that they come at various levels of precision. When I say I'm writing this on August 28 2000, and I say I'm writing this at August 28 2000 2:33:34 pm, I'm saying two different things. One statement is to day precision, and other to second precision. Notice that the second precision is more precise than the day precision, but in this case happens to be less accurate. Any time point needs to know its precision so that you can answer questions such as did this event occur at the same time as another event.

The key point is that you can't rely on only on precision for most domains. Much of business is done at day precision. It doesn't matter when my phone request for transfer of funds occurs during the day, it's just processed according to the day I do it. Otherwise life could get very annoying. If I want to make a transfer the same day a bill is presented for payment, should I worry about exactly what time the bill is presented. Common business practice says no, if it was on the same day, I don't run the risk of going overdrawn or refusing the payment.

Right on! However, the correct technical term when speaking of time is resolution, not precision. Resolution is a matter of the capabilities of the syntax/notation used to represent a temporal value; precision is a matter of data quality. A clock that provides one-microsecond ticks has a resolution of one microsecond--but its precision may not be that high. [Which reminds me: I need to ask Doug Surber what he meant by "DateAndTime clockPrecision" when he put that method in the ANSI Smalltalk Standard's <DateAndTime factory> protocol. I've assumed he actually meant precision, and not resolution.]

Chronos provides YearMonthDay, whose resolution is one civil day, and Timepoint, whose resolution is one nanosecond.

YearMonthDay instances aren't bound to time zones--they have nominal time invariance. Timepoint instances can either be bound to a time zone and have Universal Time invariance, or they can have nominal time invariance and not be bound to any time zone.

As Martin points out, choosing the time-invariance semantics that is right for each situation is of no small importance:
Another tricky area with time points is how to handle time zones. In a similar way with precision, there is no right answer for all applications. Sometimes you'll want a time point with a time zone, sometimes not. A timepoint without a time zone is perfectly sensible, it means within the local time of it's context. You find these where further time zone information is either not useful, or can be obtained from it's context. Be wary of using time zones when you don't need it.


Also be wary of not using time zones when you do need them.

Martin also advises against using temporal intervals as TimePoints. He's absolutely correct. Squeak's Chronology library makes this mistake.

Many other date/time libraries use a model of time that assumes that TimePoints have infinite resolution--which is a different aspect of the same conceptual error (e.g., Joda-Time's concept of the "Instant".) But there is no such thing as infinite resolution--not even in Physics. Such mistakes lead to ugly code, awkward APIs, poor architecture--and perhaps even wrong results.



2006-01-30

DateAndTime Construction--And Nominal Time Invariance

At the cost of adding a few new (small) methods (in the latest development version of Chronos, B1.20) I've made it much easier to compose a DateAndTime by combining a TimeOfDay with a Date (or with an AnnualDate, or with a DateAndTime.) The new instance methods (of TemporalCoordinate and CalendricalCoordinate, respectively) are #on: and #atTimeOfDay: The new class methods (of Timepoint) are #todayAt: and #todayAt:in:.

Here are some example usages:


DateAndTime todayAt: TimeOfDay now
DateAndTime todayAt: TimeOfDay now in: (Duration hours: 5.5)
TimeOfDay now on: YearMonthDay today
TimeOfDay now on: Timepoint today
(TimeOfDay hour: 17 minute: 30 second: 0) on: (YearMonthDay year: 2006 month: June day: 14)
(TimeOfDay hour: 17 minute: 30 second: 0) on: (DateAndTime year: 2006 month: June day: 14)
(TimeOfDay hour: 9 minute: 20 second: 0) on: GregorianEaster canonical
YearMonthDay today atTimeOfDay: TimeOfDay now
DateAndTime today atTimeOfDay: TimeOfDay now
GregorianEaster canonical atTimeOfDay: (TimeOfDay hour: 12 minute: 0 second: 0)


Which produce the following results when evaluated:

2006-01-30T22:15:33.465363-08:00
2006-01-30T22:15:44.920133+05:30
2006-01-30T22:15:53.108186
2006-01-30T22:16:03.176193-08:00
2006-06-14T17:30:00
2006-06-14T17:30:00-07:00
2006-04-16T09:20:00
2006-01-30T22:16:58.624536
2006-01-30T22:17:12.008788-08:00
2006-04-16T12:00:00


You might notice that some of the Timepoints that result from the examples above show a time zone offset, and some don't. Those that show a time zone offset are invariant to Universal Time. Those that don't are invariant to nominal time. A VisualWorks Timestamp has nominal time invariance. A DateAndTime instance that conforms to the ANSI-Smalltalk Standard has Universal Time invariance. Instances of either java.util.Calendar or of java.util.Date also have Universal Time invariance.

If "(DateAndTime year: 2006 month: 1 day: 1 offset: 0 hours) = (DateAndTime year: 2006 month: 1 day: 1 hour: 8 minute: 0 second: 0 offset: 8 hours)" evaluates to true, then the two DateAndTime instances have Universal Time invariance. For Universal-Time invariant time values, the point in Universal Time they designate is their invariant for the purpose of defining their meaning (semantics)--such as whether or not they are equal to some other point-in-time value.

A time value that is invariant to Universal Time will still designate the same point in Universal Time when it is translated or converted to a different time zone.

A time value that is invariant to nominal time always designates the same nominal time regardless of time zone (in other words, it acts just like a VisualWorks Timestamp.) It uses the nominal time it designates as its semantic invariant. It compares as equal to any time value that designates the same nominal time. When bound to a time zone (converted into a point-in-time that is invariant to Universal Time) its local time in the time to which it has become bound is the same as its former nominal time (because its nominal time is its semantic invariant.)

If you create a Core.Timestamp (or a nominal-time invariant Chronos.Timepoint) in an image running in San Francisco, save the image, take it with you on a plane flight to Bangalore, then restart the image, that Core.Timestamp instance would still designate the same nominal time--because there is no "binding" between a nominal-time-invariant time value and any particular time zone.

I know that most of you have been trying to use Core.Timestamps as though they had Universal Time invariance--because that's usually what you need. But Core.Timestamps do not have Universal Time invariance--which is one of the reasons they sometimes don't work for you the way you'd like.

If you need to deal with time values from multiple time zones, you need point-in-time objects with Universal Time invariance. The ANSI-Smalltalk Standard requires them. Chronos provides them. The VisualWorks Core library does not.

Which is not to say that nominal time invariance doesn't have its uses. It certainly does. The canonical example is dates that are literal values in business rules (such as the rules that define which days are holidays.) And trying to use Universal Time invariant time values in situations where they are not appropriate can lead to even worse problems than using nominal time invariant time values when Universal Time invariance is that's needed. Just ask those who've had to use java.util.Calendar for certain use cases.

Note: The latest "relatively stable" development version of Chronos is always available from the Cincom Public StORE Repository.